\qquad Mrs. Wood \qquad Subject _Math \qquad Dates: Week 3 (May 4 - May 8)

Content Area \& Materials	Learning Objectives	Tasks	Check Oppor		Submission of Work for Grades
$8^{\text {th }}$ Grade Math PAPER PACKET: Digits 9-2 - Lesson and examples - Close and Check - Homework worksheet Digits 9-3 - Lesson and examples - Close and Check - Homework worksheet Digits 9-4 - Lesson and examples - Close and Check - Homework worksheet ONLINE: - Digits 9-2 (lessons and homework) - Digits 9-3 (lessons and homework) - Digits 9-4 (lessons and homework)	Essential Questions: What are the effects of the different transformations you can perform on 2D objects in the coordinate plane? Students will know... A reflection (flip) changes a figure's position, not its size or shape. A rotation (turn) changes a figure's position, not its size or shape.	PAPER PACKET with lesson, examples, "Close and Check," and homework for Digits 9-2, 9-3, and 9-4. -or- ONLINE: Please log on to pearsonrealize.com to work through each part of the lessons for Digits 9-2, 9-3 and 9-4. The "Close and Check" page can be found by clicking on "Companion Page" at the bottom of the Close and Check screen for each lesson. Don't forget to click on Solution at the bottom of each example and "Got it?" to check your answers.	Mrs. Wood office hours - Meeting o Access by Office 365 https://ww - by email (- call/text (Email or call response w	le during mes below by soft Teams. in with password to 2.ca.us/students tusd.net) -8652) ill get a hours.	Students are expected to submit: 1. 9-2 Homework 2. 9-3 Homework 3. 9-4 Homework If submitting the PAPER PACKET, label with: Mrs. Wood Your full name class period ONLINE: Submit homework in Digits.
Scheduled, if possible, Shared Experience	Teams meetings and phone calls can facilitate meaningful discussions.				
Scaffolds \& Supports	Students working ONLINE should try out the Help functions in Digits. Notes for each lesson are included with the PAPER PACKETS.				
Teacher Office Hours Available by Teams, email, and call/text	Monday 10-11am	Tuesday 11:30am- 12:30pm	ednesday 0-11am	Thursday 11:30am 12:30pm	$\begin{gathered} \hline \text { Friday } \\ \text { 10-11am } \end{gathered}$

Digits 9-2: Reflections

	Key Concept \qquad A reflection, or flip, is a rigid motion that flips a figure over a line called the line of reflection. If a point A is on the line of reflection, then Its image A^{\prime} is Itself $\left(A^{\prime}=A\right)$. If a point B is not on the line of reflection, then B and B^{\prime} are on opposite sides of the line of reflection. They are on a line perpendicular to the line of reflection, and are the same distance from the line of reflection.					
				$4 y$		
				$A^{4}: A$		
			B^{\prime}		B	B
						B and B^{\prime} are the same
		-4	-2	0	2	distance, 3 units, from
				-21		the line of reflection,
				-		the y-axis.
				-4		
				\checkmark		

Part 1

Example Recognizing Reflections

Determine which transformation is a reflection.

Solution

The second transformation is a reflection across the y-axis.

Since A is 1 unit to the right of the y-axis, A^{\prime} is 1 unit to the left of the y-axis.

Since B is 2 units to the right of the y-axis, B^{\prime} is 2 units to the left of the y-axis.

Since C is 3 units to the right of the y-axis, C^{\prime} is 3 units to the left of the y-axis.

	(4) Got It? Which graph shows a reflection of $\triangle D E F$ across the x-axis? I. II. III.
Part 2: Describing Reflections	Intro $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a reflection across the y-axis. You can use arrow notation to show how each vertex of $\triangle A B C$ maps to Its Image after the reflection. $\begin{aligned} & A(-1,4) \longrightarrow A^{\prime}(1,4) \\ & B(-3,2) \longrightarrow B^{\prime}(3,2) \\ & C(-2,-1) \longrightarrow C^{\prime}(2,-1) \end{aligned}$ Example Describing Reflections $P Q R S$ is a rectangle. Describe in words how to map PQRS to its Image $P^{\prime} Q^{\prime} R^{\prime} S^{\prime}$. Then use arrow notation to show how each vertex of PQRS maps to its Image.

Part 3

Example Graphing Reflections

The vertices of $\triangle A B C$ are $A(1,3), B(-2,4)$, and $C(-1,1)$. Graph $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C$, Its image after a reflection across the x-axis.

Solution

Step 1 Graph $\triangle A B C$. Show the x-axis as the line of reflection.
$A(1,3)$
$B(-2,4)$
$C(-1,1)$

Step 2 Find the Image points A^{\prime}, B^{\prime}, and C^{\prime}.
Since A is 3 units above the x-axis, A^{\prime} is 3 units below the x-axis.
Since B is 4 units above the x-axis, B^{\prime} is 4 units below the x-axis.
Since C is 1 unit above the x-axis, C^{\prime} is 1 unit below the x-axis.

Step 3 Draw $\triangle A^{\prime} B^{\prime} C^{\prime}$.

	Got lt? If you reflect $\triangle J K L$ across the y-axis, what are the coordinates of J^{\prime} ?
烒	
	Part 1: Graph III Part 2: $L^{\prime} M^{\prime} N^{\prime} P^{\prime}$ is the image of LMNP after a reflection across the line $y=-1$. Part 3: $(1,1)$

Close and Check

Focus Question

What effect does a flip have on a figure?
\qquad
\qquad
\qquad
\qquad

Do you know HOW?

1. The vertices of quadrilateral $Q R S T$ are $Q(-1,3), R(2,2), S(3,-2), T(1,-2)$.
Graph quadrilateral QRST and quadrilateral $Q^{\prime} R^{\prime} S^{\prime} T^{\prime}$, its image after a reflection across the x-axis.

2. Use arrow notation to show how QRST maps to $Q^{\prime} R^{\prime} S^{\prime} T^{\prime}$ from Exercise 1.

Do you UNDERSTAND?

3. Compare and Contrast How are translations and reflections the same and different?
\qquad
\qquad
4. Error Analysis A classmate says that the reflection across the x-axis of $\triangle P Q R$ is $\triangle P^{\prime} Q^{\prime} R^{\prime}$ where $P^{\prime}(-2,1), Q^{\prime}(-5,-2)$, and $R^{\prime}(2,-4)$. What error did he make? What should the vertices be?

\qquad

Close and Check

Focus Question

What effect does a flip have on a figure?
Sample: A flip changes only a figure's position, not its size or shape. The image of the figure faces the opposite direction of the figure.

SAMPLE SOLUTIONS ARE SHOWN BELOW.

Do you know HOW?

1. The vertices of quadrilateral QRST are $Q(-1,3), R(2,2), S(3,-2), T(1,-2)$.
Graph quadrilateral QRST and quadrilateral $Q^{\prime} R^{\prime} S^{\prime} T^{\prime}$, its image after a reflection across the x-axis.

2. Use arrow notation to show how QRST maps to $Q^{\prime} R^{\prime} S^{\prime} T^{\prime}$ from Exercise 1.

Do you UNDERSTAND?
3. Compare and Contrast How are translations and reflections the same and different?

Both maintain the size and
shape of the original figure.
Translations maintain
orientation. Reflections do not.
4. Error Analysis A classmate says that the reflection across the x-axis of $\triangle P Q R$ is $\triangle P^{\prime} Q^{\prime} R^{\prime}$ where $P^{\prime}(-2,1), Q^{\prime}(-5,-2)$, and $R^{\prime}(2,-4)$. What error did he make? What should the vertices be?

He reflected across the
y-axis. $P^{\prime}(2,-1), Q^{\prime}(5,2)$, and $R^{\prime}(-2,4)$.

1. The vertices of $\triangle A B C$ are $A(-5,4)$, $B(-2,4)$, and $C(-4,2)$. If $\triangle A B C$ is reflected across the y-axis to produce the image $\triangle A^{\prime} B^{\prime} C^{\prime}$, find the coordinates of the vertex C^{\prime}.
2. The vertices of trapezoid $A B C D$ are $A(2,-2), B(6,-2), C(8,-7)$, and $D(1,-7)$. Draw a graph which shows $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ after a reflection across the y-axis.
3. a. The vertices of $\triangle A B C$ are $A(-5,5)$, $B(-2,4)$, and $C(-2,3)$. Draw a graph which shows $\triangle A B C$ and its reflection across the x-axis, $\triangle A^{\prime} B^{\prime} C^{\prime}$.
b. Graph the reflection of $\triangle A^{\prime} B^{\prime} C^{\prime}$ across the y-axis.
4. a. Writing Which of the figures are reflections of the parallelogram $A B C D$?

b. Describe the reflections in words.
5. Reasoning One image of $\triangle A B C$ is $A^{\prime} B^{\prime} C^{\prime}$.

a. How do the x-coordinates of the vertices change?
b. How do the y-coordinates of the vertices change?
c. What type of reflection is the image $\triangle A^{\prime} B^{\prime} C^{\prime}$?
6. Think About the Process

a. What is true about a figure and an image created by a reflection? Select all that apply.
A. They are the same size.
B. The figure and the image are the same shape.
C. Each point on the image has the same x-coordinate as the corresponding point in the figure.
D. Each point on the image moves the same distance and direction from the figure.
b. One image of $A B C D$ is $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. What type of reflection is the image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$?
7. Error Analysis Your friend incorrectly says that the reflection of $\triangle E F G$ to its image $\triangle E^{\prime} F^{\prime} G^{\prime}$ is a reflection across the x-axis.

a. What is the correct description of the reflection?
b. What is your friend's mistake?

Digits 9-3: Rotations

	Key Concept A rotation is a rigid motion that turns a figure about a fixed point called the center of rotation. The angle of rotation is the number of degrees the figure rotates. A positive angle of rotation turns the figure counterclockwise.
	Part 1 Example Recognizing Rotations Identify which transformation is a rotation. Solution The first transformation is a rotation about the origin.

(11) Got lt?

Which graph shows a rotation of $\triangle D E F$ about the origin?

Part 2

Intro

You can use a protractor to find an angle of rotation.

Suppose you have point P.
You rotate point P about a center of rotation O.

The angle of rotation is 135°.

Example Finding Angles of Rotation

What is the angle of rotation about the origin that maps $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$?

(1) Got It?

What is the angle of rotation about the origin that maps $\triangle J K O$ to $\triangle J^{\prime} K^{\prime} O^{\prime}$?

Part 3

Intro

$\triangle A^{\prime} B^{\prime} C^{\prime}$ is the Image of $\triangle A B C$ after a 270° rotation about the origin.

You can use arrow notation to show how each vertex of $\triangle A B C$ maps to Its Image after the rotation.
$A(-4,6) \longrightarrow A^{\prime}(6,4)$
$B(-2,1) \longrightarrow B^{\prime}(1,2)$
$C(-1,4) \longrightarrow C(4,1)$

Example Graphing Rotations

Rectangle $A B C D$ has
coordinates $A(1,2), B(1,0)$, $C(5,0)$, and $D(5,2)$.

- Show the Image of $A B C D$ after a rotation of 90° about the origin.
- Label the vertices of the image.
- Use arrow notation to show how each vertex of $A B C D$ maps to its Image.

Solution

The blue rectangle $A^{\prime} B^{\prime} C D^{\prime}$ Is the Image of $A B C D$ after a rotation of 90° about the origin.
$A(1,2) \longrightarrow A^{\prime}(-2,1)$
$B(1,0) \longrightarrow B^{\prime}(0,1)$
$C(5,0) \longrightarrow C^{\prime}(0,5)$
$D(5,2) \longrightarrow D^{\prime}(-2,5)$

	(11) Got It? Point P has coordinates $(3,0)$. If you rotate $P 270^{\circ}$ about the origin, what are the coordinates of P^{\prime} ?
	Part 1: Graph I Part 2: 180° Part 3: $(0,-3)$

Close and Check

Focus Question

What effect does a turn have on a figure?
\qquad
\qquad
\qquad
\qquad

Do you know HOW?

1. Use arrow notation to show how $\triangle J K L$ maps to its image after a rotation 180° about the origin.

2. The vertices of parallelogram $W X Y Z$ are $W(-1,1), X(3,2), Y(3,-1), Z(-1,-2)$.
The vertices of its image, parallelogram $W^{\prime} X^{\prime} Y^{\prime} Z^{\prime}$, are $W^{\prime}(-1,1), X^{\prime}(3,2)$, $Y^{\prime}(3,-1), Z^{\prime}(-1,-2)$. What is the angle of rotation?

Do you UNDERSTAND?

3. Compare and Contrast How are reflections and rotations the same and different?
\qquad
\qquad
\qquad
\qquad
4. Reasoning Would the relationship between the vertices of any figure rotated 360° and its image always be true regardless of the point of rotation? Explain.
\qquad
\qquad
\qquad
\qquad

Close and Check

Focus Question

What effect does a turn have on a figure?
Sample: A turn changes only a figure's position, not its size or shape.

SAMPLE SOLUTIONS ARE SHOWN BELOW.

Do you know HOW?

1. Use arrow notation to show how $\triangle J K L$ maps to its image after a rotation 180° about the origin.

2. The vertices of parallelogram $W X Y Z$ are $W(-1,1), X(3,2), Y(3,-1), Z(-1,-2)$.
The vertices of its image, parallelogram $W^{\prime} X^{\prime} Y^{\prime} Z^{\prime}$, are $W^{\prime}(-1,1), X^{\prime}(3,2)$,
$Y^{\prime}(3,-1), Z^{\prime}(-1,-2)$. What is the angle of rotation?

$$
360^{\circ}
$$

Do you UNDERSTAND?

3. Compare and Contrast How are reflections and rotations the same and different?

Both change the orientation of the figure. Reflections flip the figure across a given line. Rotations turn the figure around a given point.
4. Reasoning Would the relationship between the vertices of any figure rotated 360° and its image always be true regardless of the point of rotation? Explain.

Yes, it does not matter if the point of rotation is inside, outside, or on the figure. The figure and its image will always be the same.

1. Which of these graphs shows a transformation that is a rotation?
A.

B.

C.

2. Point P has coordinates $(2,6)$. If you rotate $P 90^{\circ}$ about the origin, $(0,0)$, what are the coordinates of P^{\prime} ?

3. a. Which of these graphs shows a rotation of $\triangle P Q R$ about the origin, $(0,0)$?
A.

B.

C.

b. For each graph that does not show a rotation of $\triangle P Q R$ about the origin, $(0,0)$, describe what transformation the graph does show.

Digits 9-4: Congruent Figures

A two-dimensional figure is congruent to another two-dimensional
figure if you can map one figure to the other by a sequence of rotations,
reflections, and translations. The symbol n means "is congruent to."

Solution

Method 1 Use a sequence of two translations. Flrst, translate $\triangle A B C$ to the right 5 units. Then translate the triangle down 6 units. A translation of 5 units right followed by a translation of 6 units down maps $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$.
Method 2 Use a single translation. A single translation of
 5 units right and 6 units down maps $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C$.

Got lt?

Given $\triangle D E F \cong \triangle D^{\prime} E^{\prime} F^{\prime}$, describe a sequence of rigid motions that maps $\Delta D E F$ to $\Delta D^{\prime} E^{\prime} F$.

Part 2

Example Describing Sequences of Rigid Motions

$A B C D$ is a rectangle. Given $A B C D \cong A^{\prime} B^{\prime} C D^{\prime}$, describe a sequence of rigid motions that maps $A B C D$ to $A^{\prime} B^{\prime} C D^{\prime}$.

Solution

Method 1 Use two reflections.

First, reflect $A B C D$ across the y-axis. Then reflect the image across the x-axis.
A reflection across the y-axis followed by a reflection across the x-axis maps $A B C D$ to $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

Method 2 Use a single rotation.
A single rotation of 180° about the origin maps $A B C D$ to $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

Effects on Angles Angles are taken to angles of the same measure.
$\angle A \rightarrow \angle E$, so $\angle A \cong \angle E$
$\angle B \rightarrow \angle F$, so $\angle B \cong \angle F$
$\angle C \rightarrow \angle G$, so $\angle C \cong \angle G$
$\angle D \rightarrow \angle H$, so $\angle D \cong \angle H$

Effects on Parallel Lines Parallel lines are taken to parallel lines.
$A B\|C D \rightarrow E F\| H G$

Example Determining If Figures are Congruent

 Is $\triangle J A R \cong \triangle L I D$? Explain.

Solution

First, translate $\triangle J A R$ right 4 units and down 1 unit.

Next, reflect the Image across the x-axis.
A translation of 4 units to the right and 1 unit down, followed by a reflection across the x-axis, maps $\triangle J A R$ to $\triangle L I D$. So $\triangle J A R$ is congruent

(1) Got It?

Which two triangles are congruent?

Part 1: A translation of 4 units left followed by a translation of 2 units up maps $\triangle D E F$ to $\Delta D^{\prime} E^{\prime} F^{\prime}$.
Part 2: A translation 4 units right, followed by a rotation of 90° about the point (2, -
2) maps JKLM to $J^{\prime} K^{\prime} L^{\prime} \mathrm{M}^{\prime}$.
Part 3: $\triangle A B C \cong \triangle G H I$

Close and Check

Focus Question

In what ways can you show that figures are identical?
\qquad
\qquad
\qquad
\qquad

Do you know HOW?

1. Use arrow notation to show how $\triangle A B C$ maps to its image after a reflection across the x-axis followed by a reflection across the y-axis.

$B(\square) \rightarrow B^{\prime}(\square)$

2. What are the vertices of $\triangle D E F$, the image of $\triangle A B C$ above, after a reflection across the y-axis followed by a 180° rotation clockwise around the origin?

\square

Do you UNDERSTAND?

3. Reasoning Assume $\triangle A B C$ in Problem 1 is rotated 180° about point B. What other transformation(s) could you use to map $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$?
\qquad
4. Writing Describe a sequence of rigid motions that maps PQRST to $P^{\prime} Q^{\prime} R^{\prime} S^{\prime} T^{\prime}$.

\qquad
\qquad
\qquad
\qquad

Close and Check

Focus Question

In what ways can you show that figures are identical?
Sample: To show that figures are identical, you can show that a sequence of rigid motions maps one figure to another.

SAMPLE SOLUTIONS ARE SHOWN BELOW.

Do you know HOW?

1. Use arrow notation to show how $\triangle A B C$ maps to its image after a reflection across the x-axis followed by a reflection across the y-axis.

$A(-4,-2) \rightarrow A^{\prime}(4,2)$
$B(-1,0) \rightarrow B^{\prime}(1,0)$
$C(-3,-5) \rightarrow C^{\prime}(3,5)$
2. What are the vertices of $\triangle D E F$, the image of $\triangle A B C$ above, after a reflection across the y-axis followed by a 180° rotation clockwise around the origin?
$D(-4,2) \quad E(-1,0) \quad F(-3,5)$

Do you UNDERSTAND?
3. Reasoning Assume $\triangle A B C$ in Problem 1 is rotated 180° about point B. What other transformation(s) could you use to map $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$?

A reflection across the x-axis
followed by a reflection
across the line $x=-1$ results
in the same image.
4. Writing Describe a sequence of rigid motions that maps $P Q R S T$ to $P^{\prime} Q^{\prime} R^{\prime} S^{\prime} T^{\prime}$.

A 90° rotation about point R, a reflection across $\overline{Q R}$, and a translation $\uparrow 2$ units results in
figure $P^{\prime} Q^{\prime} R^{\prime} S^{\prime} T^{\prime}$.

1. Given $\triangle Q R S \cong \triangle Q^{\prime} R^{\prime} S^{\prime}$, describe a pair of rigid motions that maps $\triangle Q R S$ to $\triangle Q^{\prime} R^{\prime} S^{\prime}$.

A. reflection across the y-axis, translation of 6 units down
B. rotation of 90° about the origin, translation of 6 units up
C. reflection across the y-axis, translation of 10 units down
D. translation of 10 units right, translation of 6 units down
2. $A B C D$ is a square. Given $A B C D \cong A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, describe a sequence of rigid motions that maps $A B C D$ to $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

3. Is $\triangle D E F \cong \triangle D^{\prime} E^{\prime} F^{\prime}$? Explain.

4. Which two triangles are congruent?

5. a. Writing Given $\triangle D E F \cong \triangle D^{\prime} E^{\prime} F^{\prime}$, describe a pair of rigid motions that maps $\triangle D E F$ to $\triangle D^{\prime} E^{\prime} F^{\prime}$.

b. Describe a way you can show that $\triangle D E F$ is identical to $\triangle D^{\prime} E^{\prime} F^{\prime}$
