11-1 Center, Radius, and Diameter

CCSS: 7.EE.B.4: Use variables to

A landscaper wants to build a flower garden with a fountain in the center and a path on the outside. The landscaper wants the fountain to be same distance from anywhere on the path.

Draw the garden plan. Explain how it matches what the landscaper wants.

The flower garden needs to be a circle with a fountain in the middle.

Reflect Could the garden path be any shape and still match what the landscaper wants?
Explain.
Sample: No, the path could only be a circle. A circular path is the only shape for which the fountain at the center of the circle is the same distance from every point on the path.

Got It?

PART 1 Got It mo

How many radii are shown?

4

PART 2 Got lt mo

In the diagram, $S T=4 \frac{1}{3} \mathrm{ft}$. What is $S O$?

$2 \frac{1}{6} \mathrm{ft}$

Got lt?

PART 3 Got lt mo

If $K M=2 x-4$ and $L M=12$, what is the value of x ?

14

Discuss with a classmate
Name the parts of the circle that are key to solving this problem.
Identify each of these parts in the diagram.
How do you use what you know about solving equations and the parts of the circle that are given to solve the problem?

Close and Check

Focus Question

What are the relationships among the parts of a circle?
Sample: The diameter includes the center and is twice the length of the radius. The radius connects the center with a point on the circle.

SAMPLE SOLUTIONS ARE SHOWN BELOW.

Do you know HOW?

1. How many radii are shown?

8
2. The radius of the circle above is 14.5 cm . Find the diameter.

29 cm

3. The diameter of a circle is $7 x+5$ and the radius is 13 . Find the value of x.

3

Do you UNDERSTAND?

4. Reasoning If the length of the radius of a circle is increased 3 times, what happens to the length of the diameter? Write an equation to show how you know.

The diameter also increases
3 times. $d=2 r ; 3(d)=3(2 r)$
5. Writing A circular path surrounds a dog park. The developers want to build a supply shed in the center of the park. How can they determine where to build the shed?

They can measure the distance straight across the park and divide it in half.

The solution is the distance
to the center of the park.

