Content Area	Learning	Tasks	Check-in		Submission of
& Materials	Objectives		Opportun	ities	Work for Grades
 7th Grade Math PAPER PACKET: Digits 2-3 Lesson and examples Close and Check Homework worksheet Digits 2-4 Lesson and examples Close and Check Homework worksheet Review Worksheet - Subtracting Expressions ONLINE: Digits 2-3 (lessons and homework) Digits 2-4 (lessons and homework) Review Worksheet - Subtracting Expressions and homework) 	 Essential Questions: 1. What is a constant of proportionality and what does it tell you? 2. How do we know when an equation shows a proportional relationship? Students will know 1. The constant of proportionality describes the relationship between two quantities that have a proportional relationship. It is the ratio y to x, or a unit rate. It tells you the constant multiple between the two quantities. 2. We know that we have a proportional relationship when an equation has a variable that is a constant multiple of the other variable. 	PAPER PACKET with lesson, examples, "Close and Check," homework for Digits 2-3 and 2-4, review worksheet (subtracting expressions) -or- ONLINE: Please log on to pearsonrealize.com to work through each part of the lessons for Digits 2-3 and 2-4. The "Close and Check" page can be found by clicking on "Companion Page" at the bottom of the Close and Check screen for each lesson. The review worksheet will be sent by email. Don't forget to click on Solution at the bottom of each example and "Got it?" to check your answer.	 Meeting on M Access by log student email Office 365 at 	he times below by: Aicrosoft Teams. ging in with I and password to cy.k12.ca.us/students bod@tusd.net) -597-8652) ct will get a	Students are expected to submit: 1. 2-3 Homework 2. 2-4 Homework 3. Review Worksheet If submitting the PAPER PACKET, label with: Mrs. Wood Your full name class period ONLINE: Submit homework in Digits and email completed review worksheet (scanned document or cell phone picture).
<u>Scheduled</u> , if possible, Shared Experience	Teams meetings and phor	ne calls can facilitate mea	aningful discussi	ons.	
Scaffolds & Supports	Students working ONLINE with the PAPER PACKETS.	should try out the Help	functions in Digi	its. Notes for each	lesson are included
Teacher Office Hours	Monday		ednesday	Thursday	Friday
Available by Teams, email, and call/text	10–11am	11:30am– 12:30pm 2	l0–11am	11:30am– 12:30pm	10–11am

	 Digits 2	2-3: Constant of Pro	portio	nality			
Key Concept	Recall that two quantities is always a constant multi constant of proportion If x and y have different u written as a unit rate. Each brick shown has a length of 20 cm. The proportion total length of one brick to the number of bricks is 20 to 1, so the unit rate is 20. The proportion remains the same as bricks are added. The final proportion is 100 to 5, so the unit rate is still 20. The constant of proportion	s x and y have a propo ple of x. This constant ality. units, then the constant Number of Bricks Total Length (cm) Number of Bricks	ortional t multip nt of pro 1 20 $\frac{20}{1}$ = 20	relation le y is ca	alled the	•	$\frac{5}{100}$ $\frac{100}{5}$ = 20
Part 1: Finding Constants of Proportionality	Part 1 Example Finding Co The weight of the stack de on the number of books in stack. Identify the constant proportionality for this situ use the constant of propor find the weight of 11 book	epends n the nt of uation. Then rtionality to	ortion	hality			

height of the display depends on the number of shoeboxes in one column of shoeboxes. What is the constant of proportionality for this situation?

Part 2-

Part 1 (continued)

Part 2: Comparing Constants

of Proportionality

Example Comparing Constants of Proportionality

You have a recipe that calls for 2 cups of flour to make 3 dozen cookies. Your friend has a cookie recipe that calls for 3 cups of flour to make 60 cookies. Are the constants of proportionality the same for the two recipes? Are the recipes for the same cookie? How do you know?

	constant prop	ber of cookies made depends of ortionality is the ratio of the <mark>nu</mark>		
	of flour.		er of cookies unt of flour	lozen = 36
	You:	constant of proportionality = $\frac{36 \text{ co}}{2 \text{ cups}}$	okies i flour	
		= 18 0	ookies per cup of flo	ur
	Your friend:	constant of proportionality = $\frac{60 \text{ co}}{3 \text{ cups}}$	okies ; flour	
jed		= 20 0	ookles per cup of flo	ur
Part 2 (continued)		ecipe has a constant of proportionality of recipe has a constant of proporti		
Part	recipe makes	o <i>not</i> have the same constant of a different number of cookies pe for the same cookie.		
		dmill daily at a constant spee day, you ran 2.35 mi in 25 m		State of the second s
onality	22.5 min. On Tues the same for the t		in. Are the cons ?	State of the second s
oortionality	22.5 min. On Tues the same for the t Part 3 Example U The table show	day, you ran 2.35 mi in 25 m wo days? How do you know sing Constants of Propo s the amount of money raised	in. Are the cons ? rtionality	State of the second s
Proportionality	22.5 min. On Tues the same for the t Part 3 Example U The table show based on the n	day, you ran 2.35 mi in 25 m wo days? How do you know sing Constants of Propo s the amount of money raised umber of tickets sold for a	in. Are the cons ? rtionality	stants of proportionalit
s of Proportionality	22.5 min. On Tues the same for the t Part 3 Example U The table show based on the n charity concert	day, you ran 2.35 mi in 25 m wo days? How do you know sing Constants of Propo s the amount of money raised umber of tickets sold for a	in. Are the cons ? rtionality Charity	stants of proportionalit
tants of Proportionality	22.5 min. On Tues the same for the t Part 3 Example U The table show based on the n charity concert a. Does the proporti	day, you ran 2.35 mi in 25 m wo days? How do you know sing Constants of Propo s the amount of money raised umber of tickets sold for a table show a constant of onality? If so, what is the	in. Are the cons ? rtionality Charity Tickets Sold	Fundraiser Money Raised (\$)
onstants of Proportionality	22.5 min. On Tues the same for the t Part 3 Example U The table show based on the n charity concert a. Does the proporti constant situation	day, you ran 2.35 mi in 25 m wo days? How do you know sing Constants of Propo s the amount of money raised umber of tickets sold for a table show a constant of onality? If so, what is the of proportionality for this ?	in. Are the cons ? rtionality Charity Tickets Sold 160	Fundraiser Money Raised (\$) 3,600
Part 3: Using Constants of Proportionality	22.5 min. On Tues the same for the t Part 3 Example U The table show based on the n charity concert a. Does the proporti constant situation b. You can tickets for	day, you ran 2.35 mi in 25 m wo days? How do you know sing Constants of Propo s the amount of money raised umber of tickets sold for a table show a constant of onality? If so, what is the of proportionality for this	in. Are the cons ? rtionality Charity Tickets Sold 160 500	Fundraiser Money Raised (\$) 3,600 11,250

Solution ·

a. First determine if the table shows a proportional relationship between the amount of money raised and the number of tickets sold.

	Charity Fundraiser			
Tickets Sold	Money Raised (\$)	Money Raised (\$) Tickets Sold		The amount of money raised depends on the number of tickets sold.
160	3,600	$\frac{3,600}{160} = 22.50$		For each row, the ratio
500	11,250	$\frac{11,250}{500} = 22.50$		of the money raised to tickets sold is \$22.50 per
750	16,875	<u>16,875</u> 750 = 22.50		ticket.
1,600	36,000	<u>36,000</u> 1,600 = 22.50	J	

The table shows a proportional relationship between the amount of money raised and the number of tickets sold.

constant of proportionality = $\frac{\text{Money Raised}}{\text{Tickets Sold}}$ = \$22.50 per ticket

The constant of proportionality is \$22.50 per ticket.

b. The maximum number of tickets that can be sold is 2,500. To find the maximum amount of money that can be raised, multiply the constant of proportionality by 2,500.

 $\frac{$22.50}{1 \text{ ticket}} \cdot 2,500 \text{ tickets} = $56,250$

The maximum amount of money that can be raised is \$56,250.

Sot It?

The table shows the time it takes to pump gasoline based on the number of gallons pumped. What is the constant of proportionality for this situation?

Pump Rate

Gasoline (gal)	Time (s)
17	136
12	96
10.5	84
9.25	74

Focus Question

What is a constant of proportionality? What does the constant of proportionality tell you?

Do you know **HOW**?

1. Each bus carries 24 passengers. The number of buses needed for a field trip depends on the number of students going on the trip. What is the constant of proportionality for this situation?

per

2. Your class collects cans for a local food bank. On Monday, 7 students collect 63 cans. Using the constant of proportionality, find the number of students who collect 90 cans on Tuesday.

students

3. The table shows the number of concert tickets sold based on the number hours the tickets are available. What is the constant of proportionality for this situation?

licket Sales				
Time (hr)	Tickets			
3	240			
5	400			
9	720			
15	1200			

T' I I C I I

Do you UNDERSTAND?

4. Writing Which variable in Exercise 3 represents the independent variable and which represents the dependent variable? Explain.

5. Reasoning How can you use the relationship between the independent and dependent variables to write a unit rate?

Focus Question

What is a constant of proportionality? What does the constant of proportionality tell you?

Sample: The constant of proportionality describes the

relationship between two quantities that have a proportional

relationship. It is the ratio y to x, or a unit rate. It tells you the

constant multiple between the two quantities.

Do you know **HOW**?

 Each bus carries 24 passengers. The number of buses needed for a field trip depends on the number of students going on the trip. What is the constant of proportionality for this situation?

24 students per

bus

 Your class collects cans for a local food bank. On Monday, 7 students collect 63 cans. Using the constant of proportionality, find the number of students who collect 90 cans on Tuesday.

10 students

3. The table shows the number of concert tickets sold based on the number hours the tickets are available. What is the constant of proportionality for this situation?

пске	licket Sales				
Time (hr)	Tickets				
3	240				
5	400				
9	720				
15	1200				

Tickot Salas

80 tickets per hour

SAMPLE SOLUTIONS ARE SHOWN BELOW.

4. Writing Which variable in Exercise 3 represents the independent variable and which represents the dependent variable? Explain.

Dependent variable: tickets

Independent variable: time

The number of tickets sold

depends on how long they have

been on sale.

5. Reasoning How can you use the relationship between the independent and dependent variables to write a unit rate?

A denominator of 1 represents

the independent variable.

The dependent variable is the

numerator that shows the

number of occurrences

per unit.

1. The variable y is in a proportional relationship with x. The number of squares represents an x value. The number of ovals represents the corresponding y value. Identify the constant of proportionality.

- 2. Suppose the relationship between x and y is proportional. When x is 6, y is 78. Identify the constant of proportionality of y to x.
- 3. Since a middle school opened, the girls' basketball team has had the same record every season. The team has won a total of 169 games while losing only 13 games. Find the constant of proportionality of wins to losses.
- 4. Does the table show a proportional relationship? If so, what is the constant of proportionality of y to x?

X ioj	5	6	7	8	
Y	90	108	126	144	BUILDERING

The distance a jet aircraft flies has a proportional relationship with its number of hours in flight. The table shows the number of miles flown for a number of hours in flight.

Passenger	Jet	Trave	I
-----------	-----	-------	---

Hours	2	3	4	5
Miles	840	1,260	1,680	2,100

- a. Find the constant of proportionality.
- **b.** How long will the jet take to travel 4,620 miles?
- 6. The height of a stack of DVD cases is in a proportional relationship to the number of cases in the stack. A stack of 6 cases and its height are shown.

1.2.1

Golden Oldies, 20	
Golden Oldies, 20	04
Golden Oldies, 20)3
Golden Oldies, 20	02
Golden Oldies, 200	01
Golden Oldies, 200	00

Digital Resources

The height of 6 DVD cases is 114 mm.

- a. What is the constant of proportionality in millimeters per DVD case?
- b. What is the height of 13 DVD cases in millimeters?
- 7. Estimation The graph shows the number of calories burned while running. Estimate the constant of proportionality of calories burned to time spent running.

- a. The constant of proportionality is about how many calories per minute?
- **b.** What does the point (35, 315) represent?
 - A. 315 calories burned in 35 minutes
 - B. 35 calories burned in 315 minutes
 - C. 315 calories burned in 1 minute

See your complete lesson at MyMathUniverse.com 54

Topic 2

Lesson 2-3

Got It?

You paid \$2.50 for 5 apples. Write an equation to represent the total cost y of buying x apples.

Intro

Part 3

When you travel to another country, you often need to exchange U.S. dollars for the local currency. When you exchange money, you receive the equivalent amount in local currency based on the exchange rate. An exchange rate is an example of a constant of proportionality.

Recently, the exchange rate for U.S. dollars to Indian rupees was 1 dollar = 45 rupees. The constant of proportionality is 45 rupees per dollar.

Example Writing Equations for Proportional Relationships

You are going on a trip to Spain. When you ask for the exchange rate, your bank shows you the table. Write an equation you can use to find how many euros y you will receive in exchange for x U.S. dollars.

change	
Euros(€)	100
37.50	x ISOOT
75	100
90	
131.25	1
	75 90

Part 2 (continued)

Solution ·

The number of euros, y, you receive depends on the number of U.S. dollars, x, you exchange.

Currency Exchange

U.S. Dollars (\$)	Euros (€)	Euros U.S. Dollars	Each row shows the
50	37.50	$\frac{37.50}{50} = 0.75$	unit rate of 0.75 euros per U.S. dollar.
100	75	$\frac{75}{100} = 0.75$	
120	90	$\frac{90}{120} = 0.75$	
175	131.25	$\frac{131.25}{175} = 0.75$	

There is a proportional relationship between U.S. dollars and euros.

The constant of proportionality is the unit rate of euros per U.S. dollar, or 0.75.

The equation is y = 0.75x.

In the equation, x represents the number of U.S. dollars and y represents the number of euros.

Let x = 50.	Let <i>x</i> = 100.	Let <i>x</i> = 120.	Let x = 175.
<mark>y</mark> = 0.75(50)	y = 0.75(100)	y = 0.75(120)	y = 0.75(175)
= 37.50 🗸	= 75 🗸	= 90 🗸	= 131.25 🗸

Sot It?

Check ·

You have returned from your trip with euros leftover. Use the table to write an equation you can use to find about how many U.S. dollars y you will receive in exchange for x euros.

Currency	Exchange
----------	----------

,		
U.S. Dollars(\$)	Euros(€)	
50	37.50	
100	75	
120	90	
175	131.25	

-Part 4

Solution ·

A **proportion** is an equation stating that two ratios are equal. You can use a proportion to solve a problem. Solving a proportion is similar to finding an equivalent ratio.

In the average adult male, for each 5 lb of body weight about 3 lb is water. How much of a 188-lb adult male is water?

Set up a proportion.	$\frac{3}{5} = \frac{w}{188} \stackrel{\leftarrow}{\leftarrow} \frac{\text{Water (lb)}}{\text{Body}} \\ \stackrel{\text{Body}}{\leftarrow} \frac{\text{Weight (lb)}}{\text{Weight (lb)}}$
Multiply each side of the equation by 188.	$\frac{3}{5}(188) = \frac{w}{188}(188)$
Simplify.	$\frac{564}{5} = W$
	112.8 <i>= w</i>

About 112.8 lb of a 188-lb adult male is water.

Example Solving Proportion Problems

In a local soccer league, the ratio of goalies to the total number of players on a team is about 2 to 30. If the league has 915 players, about how many goalies are there?

Method 1 Use a proportion. Let x = the total number of goalies in the league.

Use the ratio number of goalies total number of players	$\frac{2}{30} = \frac{x}{915}$
Multiply each side by 915.	$\frac{2}{30} \cdot (915) = \frac{x}{915} \cdot (915)$
Simplify.	$\frac{1,830}{30} = x$

61 = X

There are about 61 goalies in the league.

Method 2 Use an equivalent ratio. Find an equivalent ratio $\frac{2}{30}$ with a denominator of 915.

Part 4 (continued)	First divide the numerator and denominator by 2. The nultiply the numerator and denominator by 61. The ratio $\frac{61}{915}$ is equivalent to $\frac{2}{30}$. There are about 61 goalies in the league. Got It? The ratio of defensive players to the total number of players in a different soccer league is about 9 to 30. If the league has 890 players, about how many defensive players are in the league?
Got It? Solutions	Part 1: 6.4m Part 2: y=0.5x
Got It? olution	Part 3: y-1.33x
So	Part 4: about 267 defensive players

Focus Question

How can you tell if an equation shows a proportional relationship between two quantities? How can you identify the constant of proportionality in an equation that represents a proportional relationship?

Do you know HOW?

- The equation q = 12c represents the quantity q of t-shirts in any number of cartons c.
 - a. What is the constant of proportionality?
 - b. How many shirts are in 8 cartons?

- A car manufacturer completes 81 cars every 180 seconds. Write an equation to represent the total number of cars y for x seconds of production.
- **3.** Use the table to write an equation to find how much money *y* is received for *x* ounces of silver on the open market.

Silver Exchange Rate				
Silver (oz)	5	9	12	
Price (\$)	151.35	272.43	363.24	

Do you UNDERSTAND?

4. Writing Can setting up a proportion help you find the constant of proportionality in a relationship? Explain.

5. Error Analysis Assume 130 out of 150 students buy lunch each day. There are 180 school days in a year. A classmate writes an equation to find how many lunches will be sold in one school year. Is he correct? Explain.

$$\frac{130}{150} = \frac{x}{180}$$

Focus Question

How can you tell if an equation shows a proportional relationship between two quantities? How can you identify the constant of proportionality in an equation that represents a proportional relationship?

Sample: An equation shows a proportional relationship between

two quantities if it can be written in the form y = mx.

The constant of proportionality is the coefficient of x in the

equation y = mx.

Do you know HOW?

- **1.** The equation q = 12c represents the quantity q of t-shirts in any number of cartons c.
 - a. What is the constant of proportionality?

b. How many shirts are in 8 cartons?

2. A car manufacturer completes 81 cars every 180 seconds. Write an equation to represent the total number of cars y for x seconds of production.

3. Use the table to write an equation to find how much money y is received for x ounces of silver on the open market.

Silver Exchange Rate				
Silver (oz)	5	9	12	
Price (\$) 151.35 272.43 363.24				

$$y = 30.27x$$

SAMPLE SOLUTIONS ARE SHOWN BELOW.

4. Writing Can setting up a proportion help you find the constant of proportionality in a relationship? Explain.

Yes. Set a proportional

relationship equal to $\frac{x}{1}$. The

solution is the constant of

proportionality.

5. Error Analysis Assume 130 out of 150 students buy lunch each day. There are 180 school days in a year. A classmate writes an equation to find how many lunches will be sold in one school year. Is he correct? Explain.

$$\frac{130}{150} = \frac{x}{180}$$

No. The ratio is 130 student in

1 day = x number of students

in 180 days. He should have

written $\frac{130}{1} = \frac{x}{180}$.

2-4 Homework

- **1.** The equation $y = \frac{5}{7}x$ describes a proportional relationship between x and y. What is the constant of proportionality?
- 2. The equation P = 3s represents the perimeter P of an equilateral triangle with side length s. What is the perimeter of an equilateral triangle with side length 4 ft?
- **3.** You bike 11.2 miles in 1.4 hours at a steady rate. What equation represents the proportional relationship between the *x* hours you bike and the distance *y* in miles that you travel?
- **4.** Marco needs to buy some cat food. At the nearest store, 3 bags of cat food cost \$15.75. How much would Marco spend on 5 bags of cat food?
- **5.** An arts and crafts store sells sheets of stickers. Use the table to write an equation you can use to find the total cost *y* in dollars for *x* sheets of stickers.

Costs of Stickers		
Number of Sheets (x)	Cost in Dollars (y)	
3	6.15	
5	10.25	
13	26.65	
19	38.95	
La service service	FOR STREET, BARRIER	

6. Jane likes to exercise daily. The table shows the number of calories y she burns by exercising steadily for x minutes. How many calories would she burn by exercising for 29 minutes?

Calories Burned			
Time in Minutes (x)	Calories Burned (y)		
20	220		
25	275		
30	330		
40	440		

7. Solve the proportion $\frac{22}{24} = \frac{t}{84}$.

8. In a certain chemical, the ratio of zinc to copper is 3 to 16. A jar of the chemical contains 320 grams of copper. How many grams of zinc does it contain?

Digital Resources

- 9. Mental Math Professional chefs usually measure ingredients by weight rather than by volume. A recipe calls for 2 ounces of flour for every 3 ounces of sugar.
 - a. If you are a chef and you use
 12 ounces of sugar, how many
 ounces of flour should you use?
 - b. Explain how you can use mental math to find the answer. Explain why a chef might need mental math to find an answer like this.
- **10.** Writing Ann's car can go 228 miles on 6 gallons of gas. During a drive last weekend, Ann used 7 gallons of gas.
 - a. How far did she drive?
 - **b.** Explain how the problem changes if you were given the distance Ann drove last weekend instead of how much gas she used.
- **11.** Reasoning The equation y = 6.41x describes a proportional relationship between x and y.
 - **a.** What is the constant of proportionality?
 - **b.** Explain why your answer is called the "constant of proportionality."
- **12.** Multiple Representations The proportions $\frac{a}{b} = \frac{c}{d}$ and $\frac{b}{a} = \frac{d}{c}$ are called equivalent proportions.
 - **a.** Find a proportion equivalent to $\frac{3}{7} = \frac{9}{x}$.

A.
$$\frac{7}{3} = \frac{9}{x}$$
B. $\frac{7}{3} = \frac{x}{9}$
C. $\frac{7}{9} = \frac{x}{3}$
D. $\frac{7}{x} = \frac{9}{3}$

- **b.** What is the solution of the proportion?
- **c.** Explain why, based on this example, solving an equivalent proportion can be useful.

See your complete lesson at MyMathUniverse.com

Topic 2

Lesson 2-4

In 7–8, subtract the expressions.

7. (-4b + 15 - 7k) - (6 + 4b - 2k)

8.
$$\left(7j + \frac{1}{8}q + 3\right) - \left(\frac{5}{8}q - 11 + 2j\right)$$

9. Higher Order Thinking Make a conjecture about what happens when expressions are subtracted in the opposite order. What happens when the results are added? Support your conjecture with an example in which several of the signs are negative.

☑ Assessment Practice

10. An expression is shown.

(0.5n + 0.3) - (0.75n - 0.45)

Create an equivalent expression without parentheses.

11. Select all pairs of equivalent expressions.

$$6x + 13 - (3x - 7) \text{ and } 6x + 13 + (-3x + 7)$$

$$3x - 7 - 6x + 13 \text{ and } -3(x + 2)$$

$$6x + 13 - 3x - 7 \text{ and } 5x + 10 - 2x - 4$$

$$3x - 7 - (6x + 13) \text{ and } -2x - 7 + (5x - 13)$$

$$-(6x + 13) - (-3x - 7) \text{ and } -3(x + 2)$$