8-1 Solving Simple Equations

CCSS: 7.EE.B.4: Use variables to represent quantities in a real-world or mathematical problem, and

A shaky egg bagel baker just wants to keep things equal. What should he charge for one bagel to match his cross-town rival?

Write and solve an equation to help him out. Explain your reasoning.

Let b represent the cost of one bagel. You can represent the problem as $12 \cdot b=7.80$.

To solve, you need to find the cost of one bagel.
$\frac{12 \cdot b}{12}=\frac{7.80}{12}$
$b=0.65$
One bagel costs $\$ 0.65$. The baker should charge $65 \$$ to match his rival.

Reflect Can you represent this problem with more than one equation? Explain.
Sample: You can use any of the four operations. So, you could write the equation $7.80 \div 12=b$ to represent the problem.

Got It?

PART 1 Got It mo

Solve the equation $b-2=-10$.
$b=-8$

PART 2 Got lt mo

Solve the equation $\frac{m}{0.5}=11$. Check your answer.
$m=5.5$

PART 3 Got It mo

Which equation(s) have the same solution as $2.5 a=30$?
I. $\frac{4}{3} a=16$
II. $a-22.25=-10.25$
both I and II

Close and Check

Focus Question

How can writing two equivalent expressions help you solve a problem?
Sample: You can write an equation by writing two equivalent expressions. Then you can apply the same operation to each side of an equation to get a simpler equivalent equation.

SAMPLE SOLUTIONS ARE SHOWN BELOW.

Do you know HOW?

1. Solve the equation $g+12=18$.

$$
g=6
$$

2. Solve the equation $4 r=-1.6$.

$$
r=-0.4
$$

3. Solve the equation $\frac{w}{2.5}=9$.

$$
w=22.5
$$

4. Which equation(s) has the same solution as $\frac{d}{6}=7.3$?
A. $d-15.9=27.9$
B. $2 d=87.2$
C. $-49+d=5$
D. $\frac{d}{4}=10.95$

Do you UNDERSTAND?

5. Vocabulary What does it mean to isolate the variable?

Isolating the variable means
the variable is by itself on
one side of the equal sign and the numbers are on the
other side.
6. Error Analysis A classmate solves the equation shown below. Explain her error and find the correct solution.

$$
\begin{aligned}
5 t & =65 \\
5(5 t) & =65(5) \\
t & =325
\end{aligned}
$$

She should have divided
by 5 on both sides instead
of multiplying. The correct
solution is $t=13$.

