3-6 Solving Inequalities

CCSS: 6.EE.B.5: ... Use substitution to determine whether a given number in a specified set makes an

You have $\$ 27$ and want to invite the most friends possible to go to a concert. What is the greatest number of people, including you, that can go? Explain.

Reflect Could fewer friends go with you to the concert?
\qquad
\qquad

Got lt?

PART 1 Got lt (1 of 2)

Which numbers are solutions of the inequality $3 k<21$?
I. 4
II. 7
III. 12

PART 1 Got lt (2 of 2)

The balance in the account is $\$ 290$. Suppose your aunt writes a check for $\$ 59$.
Could she write a second check for $\$ 60$ and keep the balance above $\$ 150$?
Explain.

Discuss with a classmate
Read each other's explanation for the problem.
Is the explanation clear?
Underline any key vocabulary terms that were used in the explanation.
Discuss each of the words you underlined.
Revise the explanation if your original explanation did not use vocabulary correctly.

Got lt?

PART 2 Got lt

What is the solution of $x+5 \geq 13$?
I. $x \geq 8$

PART 3 Got It

Decide which statements are true.

I. The graph shows the solution of $2 x \leq 8$.
II. The graph shows the solution of $24 \geq 3 x$.
III. The graph shows the solution of both $x-3 \leq 5$ and $x+4 \leq 12$.

Close and Check

Focus Question

How is it possible for two different inequalities to describe the same situation? What does it mean for two inequalities to be equivalent?
\qquad
\qquad
\qquad
\qquad

Do you know HOW?

1. Circle the inequalities that have 25 as a solution.

$$
\begin{gathered}
72+x<100 \quad 216 \geq 4 x \quad x+13<38 \\
45-x>131 \quad x \div 7 \leq 9
\end{gathered}
$$

2. Complete the steps to solve the inequality.

3. Graph the inequalities on the number lines.

$$
2 x>4
$$

Do you UNDERSTAND?

4. Reasoning Are the inequalities in Exercise 3 equivalent? How do you know?
\qquad
\qquad
\qquad
\qquad
5. Error Analysis The following inequalities are displayed in your class.

$$
y>4 \quad g<8
$$

Your classmate says that the inequalities are equivalent because 5 is a solution of both. Is she correct? Explain your reasoning.
\qquad
\qquad
\qquad
\qquad
\qquad

